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In real computers the operating system organises the connection between the unique programs. In 
most operating systems a (virus)program can modify other program and/or data files. For 
analysing the working mechanism of programs which modify other programs it is necessary to 
define a new computation model. The Random Access Stored Program Machine with Attached 
Background Storage (RASPM with ABS) is an excellent tool for this reason. Using this machine 
the computer viruses and their main types can be defined mathematically. The detection methods 
of viruses can be examined using this model as well. 
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INTRODUCTION 
There are some well-known computation model for the analysis of single algorithms, that are 
Random Access Machine, Random Access Stored Program Machine, the Turing-machine, etc. 
([1], [2], [3], [4], [5]). In the first part of this paper these models, their connections and features 
are discussed. There are very useful definitions for cost criterion on these models, but they cannot 
be used for the analysis of program codes interacting with other programs, such as the computer 
viruses. Keeping the cost criterion, a new model has been developed which is based on the well-
known Random Access Stored Program Machine. After the definition of the new model, the 
equivalence between the new machine and the Turing-machine will be proved. In the third part of 
this paper the operating system and in the fourth part the computer viruses are defined 
mathematically. The viruses can be classified depending of their spreading modes. The 
oligomorphic and polymorphic viruses are defined as the special type of computer viruses. The 
fifth part of this paper is dealing with the virus detection problem. It is proved that the general 
virus detection problem can not be solved. It means that the virus detection problem should be 
simplify until it can be solved by an algorithm and therefore can be used in practice. In the last 
part of this paper two virus detection method used in practice are provided. 

1. MODELS OF COMPUTATION 
This chapter summarises the most important features of the Random Access Machine, the 
Random Access Stored Program model and the Turing Machine which will be used in the new 
model. The summary also proves that these models are simple enough to produce analytical 
results and accurately reflect the salient features of real machines. However, it must be 
emphasised that these models deal only with an unique algorithm in the same time. 
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1.1. RANDOM ACCESS MACHINE 

The Random Access Machine (RAM [1], [2], [3], [4], [5]) model is a one-accumulator computer 
where the instructions are not permitted to modify themselves. The RAM consists of a read-only 
input tape, a write-only output tape, a program and a memory (see Figure 1). The program may 
read from the input tape, write to the output tape and read or modify the content of memory cells. 
The input tape is a sequence of boxes, each of them holds an integer. Whenever a symbol is read 
from the input tape, the tape head moves one box to the right. The output is a write only tape that 
consists of also boxes being initially all blank. When a write instruction is executed, an integer is 
put into the box of the output tape that is under the output tape head currently, and the tape head 
is moved one position to the right. These mean that an input symbol can be read only once and 
when an output symbol has been written, it cannot be changed. 
 

Figure 1: Random Access Machine 
 
The program for a RAM is not stored in the memory. Consequently we should assume that the 
program does not modify itself. The program is merely a sequence of (optionally labelled) 
instructions. Each instruction consists of two parts: an operation code and an address. We assume 
that the operation code identifies an arithmetic instruction, a branch instruction or an instruction 
to handle input or output tapes. The address of an instruction can be a label which identifies the 
place of an other instruction in the program. The labels are usually used in branch instructions. 
The address of other instruction can be an operand or can be omitted. A possible instruction set of 
a RAM is shown in Figure 2. In principle, we could augment our set with any other instructions 
existing in real computers, such as logical or character operations, without altering the order of 
magnitude of the complexity of problems. So the exact nature of the instructions used in the 
program is not too important.  
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Operation Parameter Meaning 

LOAD operand It loads the value specified by the operand to the 
accumulator. 

STORE operand 
It copies the value stored in the accumulator to the cell 
specified by the operand. 

ADD operand 
It adds the value specified by the operand to the 
accumulator. 

SUB operand 
It subtracts the value specified by the operand from the 
accumulator. 

MULT operand 
It multiplies the accumulator by the value specified by the 
operand. 

DIV operand 
It divides the accumulator by the value specified by the 
operand. 

READ operand 
It loads a value from the input tape to the cell specified by 
the operand. 

WRITE operand 
It writes the value specified by the operand to the output 
tape. 

JUMP label 
It modifies the instruction pointer to the value specified by 
the label. 

JGTZ label 
It modifies the instruction pointer to the value specified by 
the label, if the accumulator is positive. 

JZERO label 
It modifies the instruction pointer to the value specified by 
the label, if the accumulator is zero. 

HALT  
It Halts the machine. 

 
Figure 2: The instruction set of the RAM 
 
The operand of an instruction can be one of the following: 

 i indicates the integer i itself, 
 [i] for nonnegative integer i, indicates the contents of register i, 
 [[i]] indicates indirect addressing. That is, the operand is the contents of register j, where j is 

the integer found in register i. If j<0, then the machine halts. 
 
Initially each register is set to zero, the instruction pointer is set to the first instruction in P, and 
the output tape is blank. After execution of the kth instruction in P, the instruction pointer is 
automatically set to the next instruction (k+1), unless the kth instruction is JUMP, HALT, JGTZ 
or JZERO. In the case of HALT the machine will stop. In the case of JUMP or if the condition of 
JGTZ or JZERO has come true the instruction pointer is set to the value specified by the label of 
the branch instruction. 

1.2. RANDOM ACCESS STORED PROGRAM MACHINE 

Since the program is not stored in the memory of RAM, the program cannot modify itself. Let us 
consider another model of computers called Random Access Stored Program Machine 
(RASPM, [1], [3]). This model is similar to RAM with the exception that the program is stored in 
memory and so it can modify itself. The instruction set for the RASPM is identical to the set for 



4

the RAM, except that indirect addressing is not needed because the program can modify itself, 
thus indirect addressing can be emulated. 
 
It is not surprising that the difference in complexity between a RAM program and the 
corresponding RASPM program appears only as a constant factor. So, if a problem execution can 
be performed by the RAM model in time T(n) than it can be performed by the RASPM in time 
kT(n), where k is an appropriate constant ([1], [3]). 

1.3. TURING MACHINE 

The Turing Machine (TM, [1], [3], [4], [5]) is based on a finite automata. It means that the 
machine modifies its actual state while it reads from and writes to the attached tape. The machine 
accept the input string if and only if all of input symbols have been read and the machine has 
entered the accepting state. There are different formal definitions of the Turing-machine in the 
literature. In this work the following definition have been used ([1]): 
 
Definition 1: Formally the T single-tape TM can be defined by the seven-tuple: 

T = < Q,S,I,d,b,q0,qf >
where 

• Q is the set of states. 
• S is the set of tape symbols. 
• I is the set of input symbols; I ⊆ S. 
• b ∈ S \ I, is the blank. 
• q0 is the initial state. 
• qf is the final (accepting) state. 
• d is the set of move functions, maps a subset of Q x S to Q x ( S x {l,r,s} ). 

 
Initially the actual state of the TM is q0. The actual state can be modified by the move functions 
depending on the previous state and the contents of the tape. The head of the tape can move 
according to the move function. It can move one cell to left or to right, or it can stay as well.  
 
The TM can consist of more tapes, but the computing capacity is polynomially related to the 
original single-tape TM. It is possible to emulate a multitape TM using a single-tape TM ([1], 
[3]). 
 
Theorem 1: Computing capacity of a Turing machine and a RASPM are equal, and their expenses 
are comparable at polynomial level, if costs of instructions are either uniform or logarithmic. 
 
Although the TM is an universal tool in computing science, but it cannot do everything. There are 
a lot of problem where the TM cannot be used to get the solution. Let us consider the Church-
theorem, if an algorithm exists for the solution of a problem, then this problem can be solved by 
the TM as well. One of the well-known unsolvable problems is the stopping problem of TM 
([1], [3]): 
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Theorem 2: It is impossible to create a TM to determine if a given TM will stop or not using a 
specific input. 

2. RASPM WITH ATTACHED BACKGROUND STORAGE  
The well-known models described above are limited to analyse only a single algorithm or 
program. However, the connection between two or more algorithms or programs cannot be 
examined only with much effort. In order to create connections between programs a specific area 
or tape is required in which programs or program data can be stored. Let us call that as 
background storage tape. Furthermore, let us suppose that all running programs can access, read 
or modify this tape. 
 
Definition 2: A G Random Access, Stored Program Machine with Attached Background Storage 
(called RASPM with ABS) is defined by the six-tuple: 

G = < V,U,T,f,q,M > 
where 

• V is a non-empty set of input symbols, output symbols and symbols stored on the 
background storage tape, furthermore, a set of the symbols stored in the memory cells (all 
together the tape alphabet); 

• U is a non-empty subset of the operation codes, U ⊆ V ;
• T is a non-empty set of the possible activities of the processor; 
• f is an unique function for which f: U → T is true; 
• q is the initial value of instruction pointer; 
• M is the initial content of the memory. 

 
Let us assume that an unique, one-to-one mapping is available between the V tape alphabet and 
the set of integer numbers. (This way, one-to-one correspondence exists for the input and output 
tapes as well as the symbols contained in memories of RASPM with ABS or RAM). 
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Figure 3: Scheme of RASPM with ABS 
 
Figure 3 shows that RASPM with ABS has an input tape, an output tape and a background 
storage tape, and all of them have infinite length. The input tape can be used only for read, the 
output tape only for write and the background storage tape for both operations. The tapes can be 
accessed by the reading and writing heads. When reading in or writing out a symbol, the 
corresponding head moves one step to the right. In the case of background storage, direct move of 
the reading/writing head is also possible. This way, we can define the tape alphabet as identical 
set of integer numbers. 
 
In addition, the machine contains a memory of infinite length, too. In contrast to the tapes, the 
memory can be addressed directly (i.e. can be read in or written out directly). The first cell of the 
memory has special feature, and it is called accumulator, similarly to RAM.   
 
Within the RASPM with ABS, the tape and memory handling is carried out by the processor. Let 
us consider the finite set U ⊆ V. The function f maps one and only one activity from T to each 
element of U. The activity f(x) that belongs to the operation code x∈U is a command. In the 
RASPM with ABS, the operation code (or command) existing under the address determined by 
the instruction pointer is executed by the processor and then the new value of the instruction 
pointer is set. The operation code is in a single memory cell, and the parameter of this operation 
code is in the following cell. Accordingly, a command of RASPM with ABS is stored in two 
cells: the first cell contains the operation code and the second one contains the related parameter. 
The possible commands, thus, the T possible activities of the processor can be seen on the Figure 
4. 
 

Operation Parameter Op.Code Meaning 
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LOAD operand 10 
It loads the value specified by the operand to the 
accumulator. 

STORE operand 20 
It copies the value stored in the accumulator to the cell 
specified by the operand. 

ADD operand 30 
It adds the value specified by the operand to the 
accumulator. 

SUB operand 40 
It subtracts the value specified by the operand from the 
accumulator. 

MULT operand 50 
It multiplies the accumulator by the value specified by the 
operand. 

DIV operand 60 
It divides the accumulator by the value specified by the 
operand. 

AND operand 70 
It performs a bit-by-bit AND operation on the accumulator 
and the value specified by the operand. 

OR operand 80 
It performs a bit-by-bit OR operation on the accumulator 
and the value specified by the operand. 

XOR operand 90 
It performs a bit-by-bit XOR operation on the accumulator 
and the value specified by the operand. 

READ operand A0 
It loads a value from the input tape to the cell specified by 
the operand. 

WRITE operand B0 
It writes the value of the cell specified by the operand to the 
output tape. 

GET operand C0 
It loads a value from the background storage tape to the cell 
specified by the operand. 

PUT operand D0 
It writes the value of the cell specified by the operand to the 
background storage tape. 

SEEK operand E0 
It moves the writing/reading head of the background storage 
tape to the position specified by the operand. 

JUMP label FC 
It sets the instruction pointer to the value specified by the 
label. 

JGTZ label FD 
It sets the instruction pointer to the value specified by the 
label, if the accumulator contains positive number. 

JZERO label FE 
It sets the instruction pointer to the value specified by the 
label, if the accumulator has been set to zero. 

 
Figure 4: The instruction set of the RASPM with ABS 
 
Let us denote the content of the ith memory cell by c(i), where i is an integer number. The 
allowed operands can be seen on the Figure 5. 
 

Operand Operand code Meaning 

i 1 i
[i] 2 c(i) 
[[i]] 3 c(c(i)) 

 
Figure 5: The operand types 
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Since a program can modify itself in the case of the stored program machine (RASPM), the 
commands with [[i]] type operands can be substituted by the other commands, moreover, several 
operations can also be substituted by a series of other operations, too.  
 
Of course, not all possible operands can be assigned to each operation. If the destination of an 
instruction has been specified by the operand then the allowed types of the operand are [i] and 
[[i]]. For example, the operation READ can have operands of type [i] or [[i]] only.  
 
The instruction set of the RASPM with ABS and the code belonging to each operation are 
included in Figure 4, too. The hexadecimal code of operation is defined by two digits. The first 
digit refers to the operation, and the second digit refers to the type of operand. It means if the 
parameter of an instruction is an operand then the instruction code can be calculated by adding 
the operation code and the operand code. 
 
When the instruction pointer addresses memory cell(s) where the content is an x∈V and x∉U,
(i.e. it is not an operation code, there is no command assigned to it) the machine stops. 
 
When the machine is switched on, the instruction pointer takes the initial q value and the 
processor executes the command addressed by the q value immediately. The program and 
algorithm to be executed will be determined by commands existing in the memory, therefore, it 
should be determined by the initial content of the memory (M). The machine stops in the 
following cases: 

• when it is switched off, 
• when it has got a value of the cell specified by the instruction pointer and this value is not 

an instruction code, 
• when a division by zero should be executed.  

In contrast to RAM, therefore, there is no command to stop the machine. (In addition to the 
division by zero, of course, it is possible to create an infinite loop when no operation is 
performed). 
 
The content of memory is the initial value of M at every switching on and it is deleted at every 
switching off. On the contrary, the background storage keeps its content also at switching off. 
Eventually, it may happen that the background storage is removed from the machine and attached 
to another machine for further use. It is an other obvious advantage that the RASPM with ABS 
can be extended because it can be attached to more background storage tapes at the same time. 
The Random Access Stored Program Machine with Several Attached Background Storage can be 
defined on the base of original RASPM with ABS. Only a new command must be defined: 
 
Definition 3: The Random Access Stored Program Machine with Several Attached Background 
Storage (RASPM with SABS) is defined as a RASPM with ABS with the following extensions: 
 

• A RASPM with SABS can be attached to more background storage tapes at the same 
time. 
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• All symbols of all background storage tapes are in V. 
• The possible activities of the processor T is extended by one activity. The actual 

background storage tape can be selected by the SETDRIVE command (Figure 6). 
 

Operation Parameter Op.Code Meaning 

SETDRIVE operand F0 
It sets the actual background storage tape to a new one 
specified by the operand.  

Figure 6: The SETDRIVE command 
 
After the execution of this command, every operation referring to the background storage 
tape is performed on the actual background storage tape.  
 

• If a command relating to a background storage tape is performed without giving a 
SETDRIVE command previously, then this command will use the first background 
storage tape. 

 
• The machine stops when a RASPM with ABS stops, furthermore if a SETDRIVE 

command relating to an invalid background storage tape would be performed.  
 
Theorem 3: The RASPM with SABS is equivalent to RASPM with ABS, so one can be simulated 
by the other one. 
 
Proof: It is enough to prove that a RASPM with SABS can be simulated by the RASPM with 
ABS, since the opposite case is trivial. Let us comb the N tapes of the original, simulated 
machine (RASPM with SABS) to the single tape of the simulating machine (RASPM with ABS) 
by the following way: The tapes of the simulated machine are numbered from 0 to N-1. Let the 
jth symbol of the ith tape be transferred to the Nj+i-th position on the new tape. Let us modify the 
memory building of the simulating machine as follows: 

• the cell 0 is the accumulator, 
• the cell 1 is kept for further purposes, 
• the cell 2 contains the address of the cell (from 3 to N+2) that contains the location of the 

reading/writing head of the background storage tape, 
• the cell i (3≤i≤N+2) contains the position of the reading/writing head of the i-3th virtual 

background storage tape, 
• the cell i (N+2<i) contains the content of the cell i-(N+2) of the simulated machine, if that 

has not been modified otherwise it is shifted, see below. 
The commands of the simulated machine has to be copied into the memory of the simulating 
machine, but the following modifications should be achieved: 

• If the original program has to modify the actual background storage tape, the sequence 
number of the new tape gets into the cell 2. In this case, instead of the original command 
SETDRIVE a the following commands should be deposited: 
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 STORE [1] ; Save the accumulator 
 LOAD a ; Load the operand 
 ADD 3 ;   calculate the real address 
 STORE [2] ;   save it as the new actual tape 
 LOAD [1] ; Restore the accumulator 
 
• If the original program reads or writes the actual background storage tape, the head of the 

single background storage tape moves to the actual position. Now the required operation 
can be performed and the position of the head of actual background storage tape is 
modified. The appropriate commands for a write operation (PUT a) are as follows: 

 
STORE  [1] ; Save the accumulator 

 SEEK [[2]] ; Move the head 
 PUT a ; Write the operand to the tape 
 LOAD [[2]] ; Load the position of the actual head 
 ADD N ;   modify the position 
 STORE [[2]] ; Save new position 
 LOAD [1] ; Restore the accumulator 
 
• If the original program modifies the position of the reading/writing head of background 

storage tape (SEEK a), then the simulating program performs the change in the 
appropriate cell as follows: 

 
STORE  [1] ; Save the accumulator 

 LOAD a ; Load the operand 
 MULT N ; Calculate the operand  
 ADD [2] ;   to the real 
 SUB 3 ;   position on the tape 
 STORE [[2]] ; Save the new position 
 LOAD [1] ; Restore the accumulator 

 
• In the course of copy of the original program the memory cell references should be also 

translated according to the shifts being in the program of the simulating machine. 
 
In such way we could simulate a RASPM with SABS with the aid of a RASPM with ABS by 
substituting several commands with a series of other commands. Not more than 7 other 
commands are necessary for the simulation of each command to be simulated. Therefore, on the 
basis of the uniform cost criterion, if the time complexity of the simulated program is T(n), then 
the time complexity of the simulating program is not more then 7T(n). This is valid independently 
on the input. If we consider a logarithmic cost criterion, the situation becomes much more 
complicated. In such case, the cost of STORE [1] and LOAD [1] commands is a function of the 
initial content of the accumulator. However, it is clear that the content of the accumulator has to 
be produced by the original program as well, and this production has also logarithmic cost with 
similar function of the size of the accumulator. It means that the commands STORE [1] and 
LOAD [1] can increase the logarithmic cost of the original program by a constant multiplication 
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factor only, even in the worst case. The above program details for simulation of commands 
contain some such commands that perform operations with the operand of the original command 
or with its value multiplied by a constant factor. (Here it is supposed that the N number of tapes 
can be considered as a constant). Consequently, the logarithmic expense T(n) of the original 
program is increased to cT(n) only �.

Therefore the computing capacity of the RASPM with ABS cannot be increased by using more 
background storage tapes. After understanding these facts it is not surprising that the computing 
capacity of RASPM with ABS is not greater than that of RASPM as follows: 
 
Theorem 4: Any RASPM with ABS can be simulated by a RASPM, and the cost functions of the 
simulating program agree with the cost function of the simulated program multiplied by an 
appropriate constant factor. 
 
Proof: Similarly to the proof of Theorem 3, let us comb now, the content of the memory and the 
background storage into a new memory. Then a RASPM is obtained, i.e. a machine without 
background storage. The main difference in combing is that the original memory has to be shared 
into blocks, because the combing may not cut the cells belonging to one instruction. Of course, a 
new JUMP instruction has to be appended to the end of each block. In this way the original 
program code can be transferred into the new memory and the content of the background storage 
can be inserted between the program blocks. In the course of transfer of the original program, the 
memory cell references should be also translated according to the shifts being in the program of 
the simulating machine. The other difference in combing is that now, there is no need for cell to 
contain the sequence number of the actual background storage (because the RASPM with ABS 
contains only one), moreover, that only one cell is required to contain the position of the unique 
reading/writing head �.

A conclusion of Theorem 4 is the following: 
 
Theorem 5: Computing capacity of a Turing Machine and a RASPM with ABS are equal, and 
their expenses are comparable at polynomial level. 
 
Proof: Since any RASPM with ABS can be simulated by a RASPM (Theorem 4) and vice versa 
(it is trivial), moreover, any RASPM can be simulated by a Turing Machine, and vice versa 
(Theorem 1), therefore a RASPM with ABS can also be simulated by a Turing Machine and vice 
versa. The cost criterion follows from the statement in Theorems 1 and 4 �.

The background storage of RASPM with ABS can be regarded as an input and an output tape 
together, since it is assumed that there are already data for input on the background storage when 
the machine starts and that the storage can contain data after the switching off the machine as 
well. In the RASPM the role of background storage can be taken by the input tape over that the 
input tape contains the content of the background storage as well. It can be accomplished by 
assigning the cells with even sequence numbers of the tape to the cells of the original input tape, 
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and the cells with odd sequence numbers to the cells of background storage. At switching on the 
machine, the RASPM copies the first amount of cells from the input tape into the free memory 
cells existing between the program blocks which memory sharing was introduced in the proof of 
Theorem 4. This copy can be executed so that the copying procedure deposits data only into the 
even cells between the program blocks. (The odd cells will be used as temporary output tape.) 
While the program is running and such input or background tape referred instruction should be 
performed that data has not been entered yet then the machine reads and stores automatically the 
suitable amount of following cells from the input tape till it reaches the required data. When the 
program tries to write into a cell of the virtual background storage then it writes to the appropriate 
position of the memory. Of course, if the referred cell has not been read yet then it has to be read 
previously. When the program tries to write onto the output tape then it writes to the next free odd 
cell between the program blocks. Before the RASPM stops, it deposits the content of the 
background storage and the virtual output tape onto the real output tape. In this sense the RASPM 
can also be regarded as a machine equipped with a background storage. 

3. OPERATING SYSTEMS' MODEL 
We should like to use the RASPM with ABS and the RASPM with SABS for the execution of 
programs. The V, U, T, and f components of  G = < V,U,T,f,q,M > have been defined previously 
after the definitions 2 and 3. Now, if we specify q and M, a program can be given which is 
specific for the operation of the machine. There are program and data files on the background 
storage(s). Via the input tape we should like to decide the running sequence of programs. A 
running program is allowed to read, write or modify also a background storage including the 
existing program and data files. Therefore, a frame program is required which is able to handle 
the program and data files and makes the specified program code run.  
 
Definition 4: The operating system is defined as a system of programs, which is able to handle 
separate program or data files and makes a specified program run. 
 
Giving the definition of the operating system of the RASPM with ABS, the similarity between the 
RASPM with ABS and the real computer systems can be observed. In both of these systems there 
is a background storage where the user can store separate data and program files. Furthermore, 
there is an operating system which is able to handle these files. 
 
The operating system can be included either in the initial value M of the memory or it can be 
located in the background storage. In the latter case, the M initial value of the memory contains a 
specific program started at the place specified by q which loads the operating system from the 
background storage and makes it run. In this case the loading program is not considered as part of 
the operating system. 
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3. VIRUSES IN RASPM WITH ABS  
The concept of operating system has been defined in definition 4 as a system of programs able to 
handle and make run program files. Therefore the definition of the viruses in RASPM with ABS 
can also be given: 
 
Definition 5: A computer virus is defined as a part of a program which is attached to a program 
area and is able to link itself to other program areas. The code of computer virus has to be 
executed when that program area is to be executed which the virus has been attached to. 
 
Viruses have not to execute the original part of the program area, but the viruses often do it 
because they want to be unobserved. In this case the original part of the program area has to be 
repaired by the virus. In the opposite case the virus may overwrite the program area thus the virus 
destroys it. 

4.1. SPREADING MODES OF VIRUSES 

As it is known in the practice, a virus can be attached to various program areas. The forms of 
attachment to different program areas are called as spreading modes. Viruses can have different 
spreading modes. 
 
Definition 6: A spreading mode of a virus is called machine-specific when some characteristic 
feature or service of the machine is used by the virus when it is spread by its given spreading 
mode. When the services of the machine are not used by the virus when it is spread then the 
spreading mode is called machine-independent. 
 
A spreading mode of a virus can be machine-specific for instance when the program areas which 
can be infected by the virus are depending on the machine. For example in the case of IBM PCs 
the boot viruses have machine specific spreading mode, because boot sector layout depends on 
the structure of the IBM PC. Any boot virus under IBM PC has to use the service of the BIOS or 
the disk controller for its spreading. 
 
A spreading mode of a virus can be machine-independent for instance when the program areas 
which can be infected by the virus are not depending on the machine. For example the viruses 
which can infect C source file have machine-independent spreading mode, because they can 
infect C source files under different machines using the same spreading mode. 
 
Similar definitions holds for the dependency of spreading modes from the operating system: 
 
Definition 7: The spreading mode of a virus is called operating system-specific when some 
characteristic feature or service of the operating system is used by the virus when it is spread by 
its given spreading mode. When the services of the operating system are not used by the virus 
during its spreading, the spreading mode is called operating system-independent.  
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A spreading mode of a virus can be operating system-specific for instance when the program 
areas which can be infected by the virus are depending on the operating system. For example 
under the DOS operating system viruses that infect .EXE files have DOS specific spreading 
mode, because the structure of the .EXE files is DOS specific. 
 
A spreading mode of a virus can be operating system-independent for instance when the program 
areas which can be infected by the virus are not depending on the operating system. For example 
under the DOS operating system the boot viruses usually have DOS independent spreading mode, 
because the infection of boot sector (or master boot sector) can be performed without using DOS 
services. 
 
Definition 8: The virus is called machine-specific when it can be spread only by machine-specific 
spreading mode, and the virus is called machine-independent if its all spreading modes are 
machine-independent. 
 
Definition 9: The virus is called operating system-specific when it can be spread only by 
operating system-specific spreading mode, and the virus is called operating system-independent if 
its all spreading modes are operating system-independent. 
 
It is obvious that executable program files can not be infected by a really machine-independent 
virus since it has to use the instruction set of the interpreter which can execute the executable file. 
The executable files are generated from source files written in a high level programming 
language. A virus can modify these source files during its spreading, thus the virus is independent 
from the processor which executes the virus code. Of course, the compilers which compile the 
source codes have to be compatible to each other. 
 
The boot viruses of IBM PCs are machine-specific, but operating system-independent viruses. 
The file append viruses under DOS operating system which infects executable files are machine-
specific and operating system-specific viruses and the file append viruses under DOS operating 
system which infects source files are machine-specific and operating system-specific viruses. 
 
Definition 10: The spreading mode is called direct when the virus is attached to an executable 
program area during its spreading, and indirect, when the virus is attached to a non-executable 
program area during its spreading. 
 
In the case of viruses with direct spreading mode the virus infects executable files. The 
executable files can be interpreted by the operating system or by an other program. For example 
the Microsoft Word for Windows 6.0 documentation file which can include a macro program is 
an executable file, because the Word can interpret and execute the macro program. Thus a virus 
can infect these documentation files and this is direct spreading mode as well. 
 
In the case of viruses with indirect spreading mode the viruses have to infect source files. These 
source files have to be compiled and/or linked. It means that the viruses can appear in the 
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executable files in different forms, depending on the compiler and the linker. In such cases the 
virus fully build in the host program. 

4.2. OLIGOMORPHIC AND POLYMORPHIC VIRUSES  

The form of appearance of the viruses discussed above are the same in all occasion of infection. 
However, it is easy to imagine that a virus can change its own form in some ways during the 
infection. 
 
Definition 11: The spreading mode is called polymorphic when there are two program areas 
infected by the specified spreading mode of the same virus and the code sequences of the virus 
programs are different. 
 
Definition 12: The virus is called polymorphic when it has polymorphic spreading mode. 
 
Definition 13: The spreading mode is called oligomorphic when there are two program areas 
infected by the specified spreading mode of the same virus and the code sequences of the virus 
programs are the same, but there are at least one part of the virus code which is crypted by 
different keys. 
 
Definition 14: The virus is called oligomorphic when it has oligomorphic spreading mode and it 
has not polymorphic spreading mode. 
 
A possible realisation of oligomorphic viruses is a special copy when the virus uses a method of 
cryptography with a random key. An oligomorphic virus attaches also a decoding part to the 
encoded virus program. 
 
The realisation of polymorphic viruses is more complicated than oligomorphic viruses. They can 
change their encoding part, too. This is possible e.g. by a random selection of encoding routines 
from prepared set. This method can also be performed by a random generation of the routine’s 
commands during the spreading. It can be realised e.g. by the following ways: 
 

• by changing the sequence order of the encoding routine, 
• by using that the processor is able to perform the same operation by more than one 

command or command sequences, 
• by putting dummy commands in the encoding routine randomly.  

 
In the practice there are some subtypes of oligomorphic and polymorphic viruses: 
 
Definition 15: The virus is called slow-polymorphic when it has polymorphic spreading mode, 
but it uses the polymorphism very rarely. 
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Definition 16: The virus is called slow-oligomorphic when it has oligomorphic spreading mode, 
but it changes the random key of the coder routine very rarely. 

5. THE VIRUS DETECTION PROBLEM 
With the emergence of viruses the problem of virus detection also emerges: 
 
Definition 17: The virus detection problem is a question of theory of algorithms, namely whether 
a specific algorithm exists or not which is able to decide that a specified program area contains a 
virus able to be spread or not. 
 
Here we assume that all information is available concerning the format of the program area. It 
means that in the case of an executable file the instruction set of the processor and the operation 
of each command is known; in the case of source files the syntax of the programming language 
and the operation of the compiler is fully known. 
 

5.1. THE GENERAL VIRUS DETECTION PROBLEM 

 
Considering the Church-theorem ([1], [3], [4]), if there is an algorithm which is able to solve the 
virus detection problem, then a Turing-machine can be built to execute the corresponding 
algorithm. Unfortunately it is impossible to build such a Turing-machine even in the simplest 
case: 
 
Theorem 6: It is impossible to build a Turing-machine which could decide if an executable file in 
a RASPM with ABS contains a virus or not.  
 
Proof: According to theorem 1. it is possible to create a RASPM or RASPM with ABS to 
simulate the Turing-machine. (The modification of the expenses functions of the procedures due 
to the simulation is irrelevant from the point of view of the proof of the theorem.) Therefore let us 
create a program P in the RASPM with ABS which simulates the Turing-machine. This program 
writes a character 1 onto the output tape when the simulated Turing-machine stops in an 
acceptable state.  
 
Let us make an easy virus which is able to infect program files. Let the virus contain the 
mentioned program P in such way that at first P is executed as an answer for a random but fixed 
B input, then the virus starts running. It can be realised by attaching the virus to P, and inserting a 
JUMP command after each "write character 1" command of P. Thus the control is passed to the 
first command of the virus program. Let the virus program be so that it copies not only the virus 
program but also the program P and the fixed input B as well, in the event of infection.  
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According to this procedure, it is possible to create a program V in RASPM with ABS for any 
Turing-machine, that becomes a virus if it is really able to be spread. It is obvious that program V 
can spread if program P and consequently the Turing-machine stops for the fixed input. 
 
Let us suppose the opposite: there exists a Turing-machine T, which reads any program of 
RASPM with ABS and writes the character 1 out if the program contains a virus and writes the 
character 0 out if it does not. If the Turing-machine answers the input program V by the character 
1 then program P or the corresponding Turing-machine will stop receiving the input B in any 
case. If the answer is 0, the corresponding Turing-machine will never stop. Therefore the Turing-
machine is able to decide that an other Turing-machine will or will not stop as an answer for any 
input. However, this is impossible ([4]) �.

The conclusion is the following: According to the Church theorem there is no way to build an 
algorithm for the detection of viruses. 
 
Now, we see that the virus detection problem defined by definition 4.1. cannot be solved. 
Therefore, it is advisable to restrict the problem. 
 

5.2. VIRUS DETECTION METHODS 

 
A possible simplification of the virus detection problem if we deal with "several" known viruses 
only. In this case the known viruses can also be used for the detection algorithm.  
 
Let us take a series of codes from each known virus, which emerges in every infected file when 
an infection takes place. Let be this series of codes called as sequence. The task of the virus 
detection program is reduced to the search for these sequences in the program areas. Further 
problems emerge, however, concerning the algorithms of this principle: 

• It is not for sure that there are some sequences for a polymorphic virus that can detect all 
variants of the virus.; 

• It is unknown what is the probability of false alarms, i.e. when a sequence is found by 
random; 

• It is a question what kinds of expenses criteria are suitable to the realisation of the 
sequence searching algorithm. 

 
It is obvious that the method can not be used for detection of polymorphic viruses and we have to 
look for other procedures for this purpose, but the method can be used for oligomorphic viruses 
as well. In this case the sequence for searching should be generated using the codes of decoder 
function of the virus.  
 
The quantity of false alarms depends on the length of the sequences and on the probability of 
finding specified values in specified cells of the program files. If the length of a sequence is N, 
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maximum n values can appear at equal probability, there are altogether M sequences and the 
overall length of the examined files is L >> N, then the probability of finding any of the 
sequences in a file is: 

 p L M
n N≈ ⋅ ⋅
1

.

It means that if e.g. the number of the sequences is 2000 and their length are 30 bytes, the 
probability of finding any sequences in a randomly generated units of 100 Mbyte length is 
p ≈ ⋅ −1 19 10 61, . Unfortunately the false alarm can not be excluded completely, but the sequence 
search method can be considered as safe due to the low probability of the random appearance of 
the sequences of appropriate length. 
 
Let us examine now the expenses criterion with which the sequence searching algorithm can be 
realised. Since computers often used in practice have fixed length of cells and memory size 
(which is not the case for RASPM with ABS), the expense of each command will be less than a 
constant value. It is recommended therefore to calculate with uniform expenses. The sequence 
searching algorithm compares the content of each cell to be examined with the first cells of the 
sequences. If the examination is executed separately, altogether L M⋅ comparisons have to be 
performed. However, the sequences can be ordered according to the content of their first cells. Let 
us start the examination with the character in the middle position, and then follow the procedure 
into the right direction. Using this method in average only L M⋅ log  comparisons have to be 
carried out, provided the contents of the first cells of sequences are different ones ( x denotes 
the integer number not less then x ). If identical values are found in the first cells of the 
sequences, the contents of the 2nd cells have also to be examined. The expected value of the 

required further examinations is L M
n

⋅ ⋅
1

, therefore this is the number of the examinations 

required in addition. If there is an identity found in the kth examination, further L M
nk⋅ ⋅
1

examinations are required. Therefore, the expected value of the altogether required examinations 
is: 

s L M
n n n

L M n

n

N

N
= ⋅ ⋅ + + + +FHG IKJ= ⋅ ⋅

−

−
−1 1 1 1

1 1

1 1
2 1...

 

Considering the worst possible case, the maximum number of comparisons is s L M N= ⋅ ⋅ . Since 
the time requirement of the algorithm can be estimated by the number of comparisons, therefore 
the sequence searching algorithm can be realised in polynomial time. 
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For identification of polymorphic viruses a simulation method can be used. The substance of the 
method is that the execution of the examined program file is started during the emulation 
(simulation) of the processor. A statistics is prepared about the executed commands, which is 
continuously compared to the existing statistics of known polymorphic viruses. When an 
agreement is found, a virus is detected. Based on this method, after encoding, the operation codes 
of the suspected program can be investigated. Compared to the sequence searching process, no 
part of the series of codes is compared to known codes, but a statistics prepared from the 
operation codes of a certain part of code series is examined. In such a way the viruses can be 
identified even if parts of the commands are exchanged. However, in order to reach a safety of the 
search comparable to the sequence search method the statistics has to be based on much more 
operation codes. 
 
However, the emulation type searching method can not be realised within polynomial time, since 
a virus can exist decoding routine of which is executed in exponential time, depending on a 
random number. 
 
A possible method of searching unknown viruses is the processor emulating method mentioned 
for the polymorphic viruses. In this case, however, no statistics is prepared, but a characteristic 
virus activity is watched. These typical characteristic virus activities are, e.g. when a program  

• modifies an other program file, 
• attempts to modify an other program file,  
• attempts to modify the operating system. 

 

6. CONCLUSION 
This paper highlighted a new computation model of operating systems and computer viruses. 
Using the defined RASPM with ABS or RASPM with SABS it is very easy to examine the 
working mechanism of unique programs interacting other program codes under different 
operating systems. This interaction can be carried out that the unique program codes can be 
identified on the background storage. This identification and also the handling are carried out by 
operating systems thus operating systems must be previously defined. This definition was given 
in the 3rd point of this paper. The RASPM with ABS/SABS with the operating system together is 
a powerful tool for the examination of interacting algorithms (program codes) which are under 
the influence of each other, moreover, which can be modified by the other.  
 
The RASPM with ABS/SABS can be used for examining the detection methods of computer 
viruses using mathematical methods. Under this model the definitions of computer viruses and 
the spreading modes of computer viruses is provided. It is proved that the general virus detection 
problem can not be solved. It means that the virus detection problem should be simplify until it 
can be solved by an algorithm and therefore can be used in practice. 
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In the last part of this paper two virus detection method used in practice are provided. The 
sequence searching algorithm can be solved in polynomial time, but this method can not be used 
for detection of polymorphic viruses. The other method is the simulation method which can be 
used for detecting the polymorphic viruses as well, but this searching method can not be realised 
within polynomial times in all cases. 
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